Estimating Forecast Error Covariances for Strongly Coupled Atmosphere–Ocean 4D-Var Data Assimilation

نویسندگان

  • POLLY J. SMITH
  • AMOS S. LAWLESS
  • NANCY K. NICHOLS
چکیده

Strongly coupled data assimilation emulates the real-world pairing of the atmosphere andocean by solving the assimilation problem in terms of a single combined atmosphere–ocean state. A significant challenge in strongly coupled variational atmosphere–ocean data assimilation is a priori specification of the cross covariances between the errors in the atmosphere and ocean model forecasts. These covariances must capture the correct physical structure of interactions across the air–sea interface as well as the different scales of evolution in the atmosphere and ocean; if prescribed correctly, they will allow observations in one medium to improve the analysis in the other. Here, the nature and structure of atmosphere–ocean forecast error cross correlations are investigated using an idealized strongly coupled single-column atmosphere–ocean 4D-Var assimilation system. Results are presented from a set of identical twin–type experiments that use an ensemble of coupled 4D-Var assimilations to derive estimates of the atmosphere–ocean error cross correlations. The results show significant variation in the strength and structure of cross correlations in the atmosphere–ocean boundary layer between summer and winter and between day and night. These differences provide a valuable insight into the nature of coupled atmosphere–ocean correlations for different seasons and points in the diurnal cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An idealized study of coupled atmosphere-ocean 4D-Var in the presence of model error

Atmosphere only and ocean only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window le...

متن کامل

Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model

2 P.J. SMITH ET AL. be expected from coupled data assimilation. When compared to uncoupled initialisation, coupled assimilation is able to produce more balanced initial analysis fields, thus reducing initialisation shock and its impact on the subsequent forecast. Single observation experiments demonstrate how coupled assimilation systems are able to pass information between the atmosphere and o...

متن کامل

Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

A four-dimensional ensemble variational (4D-EnVar) data assimilation has been developed for a limited area model. The integration of tangent linear and adjoint models, as applied in standard 4D-Var, is replaced with the use of an ensemble of non-linear model states to estimate fourdimensional background error covariances over the assimilation time window. The computational costs for 4D-En-Var a...

متن کامل

A Hybrid Approach to Estimating Error Covariances in Variational Data Assimilation

Data Assimilation (DA) involves the combination of observational data with the underlying dynamical principles governing the system under observation. In this work we combine the advantages of the two prominent DA systems, the 4D-Var and the ensemble methods. The hybrid method described in this paper consists of identifying the subspace spanned by the major 4D-Var error reduction directions. Th...

متن کامل

Adaptive Tuning , 4 D - Var and Representers In

Four dimensional variational data assimilation, called 4D-Var in the atmospheric sciences literature, is a method for combining forecast, dynamical systems equations, prior information about properties of the atmosphere, and heterogeneous observations, to get an estimate of the evolving state of the atmosphere. Summary: We (abstractly) generalize thètoy' weak 4D-Var model in Gong, Wahba, Johnso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017